MQ137 Semiconductor Sensor for Ammonia

Sensitive material of MQ137 gas sensor is SnO2, which with lower conductivity in clean air. When the target combustible gas exist, the sensor’s conductivity is more higher along with the gas concentration rising. Please use simple electrocircuit, convert change of conductivity to correspond output signal of gas concentration.

MQ137 gas sensor has high sensitivity to Ammonia, also to other organic amine. The sensor could be used to detect different gas which contains Ammonia, it is with low cost and suitable for different application.

**Character**
- * Good sensitivity to Ammonia
- * Long life and low cost
- * Simple drive circuit

**Application**
- * Domestic Ammonia detector
- * Industrial Ammonia gas detector
- * Portable gas detector

### Technical Data

**Basic test loop**

<table>
<thead>
<tr>
<th>Character</th>
<th>Model No.</th>
<th>MQ137</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Type</td>
<td>Semiconductor</td>
<td></td>
</tr>
<tr>
<td>Standard Encapsulation</td>
<td>Bakelite (Black Bakelite)</td>
<td></td>
</tr>
<tr>
<td>Detection Gas</td>
<td>Ammonia</td>
<td></td>
</tr>
<tr>
<td>Concentration</td>
<td>5-500ppm (Ammonia)</td>
<td></td>
</tr>
<tr>
<td>Loop Voltage</td>
<td>$V_C \leq 24V$ DC</td>
<td></td>
</tr>
<tr>
<td>Heater Voltage</td>
<td>$V_H = 5.0V \pm 0.2V$ AC/DC</td>
<td></td>
</tr>
<tr>
<td>Load Resistance</td>
<td>$R_L$ Adjustable</td>
<td></td>
</tr>
<tr>
<td>Heater Resistance</td>
<td>$R_H = 31\Omega \pm 3\Omega$ (Room Tem.)</td>
<td></td>
</tr>
<tr>
<td>Heater consumption</td>
<td>$P_H \leq 900mW$</td>
<td></td>
</tr>
<tr>
<td>Sensing Resistance</td>
<td>$R_s = 2K\Omega - 15K\Omega$ (in 50ppm NH3)</td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>$S = Rs$(in air)/$Rs$(5000ppm CH4)$\geq 5$</td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>$\alpha \leq 0.6(R_{100ppm}/R_{50ppm}$ NH3)</td>
<td></td>
</tr>
<tr>
<td>Tem. Humidity</td>
<td>20℃±2℃; 65%±5%RH</td>
<td></td>
</tr>
<tr>
<td>Standard test circuit</td>
<td>$V_C = 5.0V \pm 0.1V$; $V_H = 5.0V \pm 0.1V$</td>
<td></td>
</tr>
<tr>
<td>Preheat time</td>
<td>Over 48 hours</td>
<td></td>
</tr>
</tbody>
</table>

Power of Sensitivity body ($Ps$): $Ps = V_C^2 \times R_s / (R_s + R_L)^2$
Resistance of sensor (Rs): \[ Rs = \frac{(V_c - V_{RL})}{V_{RL}} \times RL \]

**Sensitivity Characteristics**

Fig. 1 shows the typical sensitivity characteristics of the MQ137, ordinate means resistance ratio of the sensor \((Rs/Ro)\), abscissa is concentration of gases. Rs means resistance in different gases, Ro means resistance of sensor in 50ppm ethanol. All test are under standard test conditions.

P.S.: Sensitivity to smoke is ignite 10pcs cigarettes in 8m³ room, and the output equals to 10ppm NH3

**Influence of Temperature/Humidity**

Fig. 2 shows the typical temperature and humidity characteristics. Ordinate means resistance ratio of the sensor \((Rs/Ro)\), Rs means resistance of sensor in 50ppm NH3 under different tem. and humidity. Ro means resistance of the sensor in environment of 50ppm NH3, 20°C/65%RH

**Structure and configuration**

Structure and configuration of MQ137 gas sensor is shown as Fig. 3, sensor composed by micro Al2O3 ceramic tube, Tin Dioxide (SnO2) sensitive layer, measuring electrode and heater are fixed into a crust made by plastic and stainless steel net. The heater provides necessary work conditions for work of sensitive components. The enveloped MQ-4 have 6 pin, 4 of them are used to fetch signals, and other 2 are used for providing heating current.
**Notification**

1 **Following conditions must be prohibited**

1.1 Exposed to organic silicon steam

   Organic silicon steam cause sensors invalid, sensors must be avoid exposing to silicon bond, fixature, silicon latex, putty or plastic contain silicon environment

1.2 High Corrosive gas

   If the sensors exposed to high concentration corrosive gas (such as H₂S, SO₅₂⁺, Cl₂, HCl etc), it will not only result in corrosion of sensors structure, also it cause sincere sensitivity attenuation.

1.3 Alkali, Alkali metals salt, halogen pollution

   The sensors performance will be changed badly if sensors be sprayed polluted by alkali metals salt especially brine, or be exposed to halogen such as fluorin.

1.4 Touch water

   Sensitivity of the sensors will be reduced when spattered or dipped in water.

1.5 Freezing

   Do avoid icing on sensor’s surface, otherwise sensor would lose sensitivity.

1.6 Applied voltage higher

   Applied voltage on sensor should not be higher than stipulated value, otherwise it cause down-line or heater damaged, and bring on sensors’ sensitivity characteristic changed badly.

1.7 Voltage on wrong pins

   For 6 pins sensor, if apply voltage on 1、3 pins or 4、6 pins, it will make lead broken, and without signal when apply on 2、4 pins

2 **Following conditions must be avoided**

2.1 Water Condensation

   Indoor conditions, slight water condensation will effect sensors performance lightly. However, if water condensation on sensors surface and keep a certain period, sensor’ sensitivity will be decreased.

2.2 Used in high gas concentration

   No matter the sensor is electrified or not, if long time placed in high gas concentration, if will affect sensors characteristic.

2.3 Long time storage

   The sensors resistance produce reversible drift if it’s stored for long time without electrify, this drift is related with storage conditions. Sensors should be stored in airproof without silicon gel bag with clean air. For the sensors with long time storage but no electrify, they need long aging time for stability before using.

2.4 Long time exposed to adverse environment

   No matter the sensors electrified or not, if exposed to adverse environment for long time, such as high humidity, high temperature, or high pollution etc, it will effect the sensors performance badly.

2.5 Vibration

   Continual vibration will result in sensors down-lead response then rupture. In transportation or assembling line, pneumatic screwdriver/ultrasonic welding machine can lead this vibration.

2.6 Concussion

   If sensors meet strong concussion, it may lead its lead wire disconnected.

2.7 Usage

   For sensor, handmade welding is optimal way. If use wave crest welding should meet the following conditions:

   2.7.1 Soldering flux: Rosin soldering flux contains least chlorine

   2.7.2 Speed: 1-2 Meter/ Minute

   2.7.3 Warm-up temperature: 100±20℃

   2.7.4 Welding temperature: 250±10℃

   2.7.5 1 time pass wave crest welding machine

   If disobey the above using terms, sensors sensitivity will be reduced.